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Abstract. The primary stationary and oscillatory Bénard-Marangoni instability is investigated in a fluid
layer of infinite horizontal extent, bounded below by a rigid plane and above by a deformable upper
surface, subjected to a vertical temperature gradient. Since the viscosity is temperature-dependent the
consequences of relaxing Oberbeck-Boussinesq approximation and free surface deformability are theoreti-
cally examined by means of small disturbance analysis. The problem has been solved numerically by the
Taylor series expansion method. The results obtained confirm that when the free surface is undeformable,
stationary convection develops in the form of polygonal cells, and oscillatory motion cannot be detected.
When the surface deformability is considered, stationary convection sets in, either as a short-wavelength
hexagonal instability or as a long-wavelengh mode or as both, and oscillatory convection is also possible.
The stability threshold for the short-wavelength mode depends mainly on the viscosity variation while the
long-wavelength mode is determined by the surface deformation. Numerically, it is found that the neutral
oscillatory Marangoni numbers are only negative. When a variable-viscosity model is used the theoretical
and experimental results are in better agreement.

PACS. 47.20.-k Hydrodynamic stability – 47.27.-i Turbulent flows, convection, and heat transfer –
68.10.-m Fluid surfaces and fluid-fluid interfaces

1 Introduction

The Bénard-Marangoni instability induced by buoyancy
forces within the volume and/or by surface-tension-gra-
dients along the upper free surface of a liquid layer has
received considerable attention. This phenomenon arises
whenever the temperature gradient across the layer ex-
ceeds a certain critical value. Substantial progress regard-
ing the thermal instability has been made since the ex-
periments performed by Bénard. Applying the methods
of the linear perturbation technique for predicting the
appearance of thermal instability leads us back to the
original theoretical analysis of Rayleigh. While Pearson’s
theoretical work [1] explained the thermocapillary insta-
bility mechanism, Nield [2] considered coupled buoyant
and thermocapillary mechanism.

Even though many authors have treated the prob-
lem experimentally and theoretically there remain dis-
crepancies between measured [3–6] and theoretically de-
termined instability thresholds. The values available from
Koschmieder and Switzer’s experiment [3] are below those
predicted from Nield’s theoretical approach, in which the
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surface is supposed flat. Nitschke and Thess [4] reported
the observed critical temperature difference to coincide
with the predicted one. While the critical Marangoni num-
ber (the main relevant parameter of the instability) mea-
sured by Schatz et al. [5] agrees with theory, the exper-
iments [6] found the onset of the instability in very thin
liquid layers to occur 35% below the predictions of linear
stability analysis. This experiment is concerned with the
long-wavelength instability originating from the fluctua-
tions of the free surface height, while the Schatz’s et al. [5]
ones are related to the short-wavelength hexagonal insta-
bility due to the temperature fluctuations on the free sur-
face. Theoretically it is predicted [7–14] that the long-
wavelength mode becomes more important for very thin
and viscous liquid layers and, in microgravity, and can
even set in as a primary instability.

Another hypothesis of Nield’s model is that the trans-
port coefficients are assumed to be relatively insensi-
tive to temperature variations. For some liquids, however,
the dynamic viscosity varies significantly with the tem-
perature, an effect that cannot always be neglected. A
variable viscosity was introduced by Palm and starting
with his work [15] most investigations (see, for example,
[16–18]) have been restricted to Rayleigh-Bénard buoy-
ancy instability problems.
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Recently, several works have been devoted to the prob-
lem of interaction between surface-tension and variable
viscosity effects. The only observations of the flow pat-
terns caused by the temperature differences across the
layer with a free surface have been performed by Hoard
et al. [19] and the critical Marangoni numbers were not
reported. First, Lebon and collaborators [20,21] theoreti-
cally studied the coupled effects of a variable viscosity and
a deformable upper surface on the onset of pure station-
ary thermocapillary convection. This analysis has been
extended in two different ways. While in [22,23] the cou-
pled effects of buoyancy and thermocapillarity were con-
sidered, but under the hypothesis that the upper bound-
ary remains flat, in [24] the gravity waves as well as a
temperature-dependent viscosity on the free surface were
taken into account. A problem of stationary Marangoni in-
stability in a flat liquid layer has been treated by Slavtchev
and Ouzounov [25] under the exponential law of viscosity
dependance on temperature, and in microgravity.

The aim of this article is twofold. First, it provides a
development of the study by Gouesbet et al. [13] concern-
ing a variable viscosity effect and secondly, it generalizes
the study of Selak and Lebon [22] considering free sur-
face deformability. The main problems in question are to
determine the influence of these two factors on the con-
vective threshold and to show a better agreement between
the theory and experimental data.

2 Formulation of the problem

2.1 Mathematical model

The primary stationary and oscillatory instabilities in a
liquid layer initially at rest and stimulated by heating from
below or above are studied. The Fourier law of heat con-
duction is taken for granted. The liquid layer is assumed
to be of infinite horizontal extent confined between a rigid
plane z = 0 and a free surface with thickness d. Carte-
sian coordinates are used: two horizontal axes x and y are
located at the rigid wall and a positive axis z is directed
toward the free surface.

The fluid is supposed to have Newtonian density

ρ = ρ0 [1− α (T − T0)] , (1)

where T is the temperature of the liquid, ρ0 is its value at
a reference temperature T0 and α is the positive coefficient
of the thermal liquid expansion.

It is a reasonable approximation for a wide variety of
liquids [20–25] to extend the Boussinesq model and con-
sider also the kinematic viscosity to be temperature de-
pendent. Here, a linear law for the kinematic viscosity is
selected

ν = ν0 + ζ (T − T0) , (2)

where ν0 is viscosity at the reference temperature T0 and
ζ = ∂ν/∂T |T0 is assumed constant. It is negative for sili-
con oil and glycerol.

The fluid motion is driven by surface stresses that arise
due to the Marangoni effect. Within our model the sur-
face tension σ is assumed to be a linear function of the
temperature

σ = σ0 − γ (T − T0) , (3)

with σ0 being the surface tension at temperature T0. The
coefficient γ = −∂σ/∂T |T0 is positive for most liquids. It
can be negative, however, for some metal alloys.

2.2 Governing equations

Using Cartesian coordinates (x, y, z) the equation for
mass, momentum, and energy conservation read

∂Uj

∂xj
= 0, (4)

ρ0
∂Ui

∂t
+ ρ0Uj

∂Ui

∂xj
= ρ0 [1− α (T − T0)]Fi −

∂p

∂xi

+
∂

∂xj

[
µ

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
, (5)

ρ0c
∂T

∂t
+ ρ0cUj

∂T

∂xj
= k

∂2T

∂x2
j

, (6)

where Ui (i = x, y, z) are the velocity components, µ =
ρ0ν is the dynamic viscosity, k is the heat conductivity,
and c is the specific heat. The pressure inside the fluid is
denoted by p and Fi = (0, 0,−g) is the gravity acceler-
ation. Here Einstein’s convention of summation over re-
peated indices is used.

2.3 Boundary conditions

At the rigid plate (z = 0) the temperature is fixed (T =
T0). No slip and no penetration boundary conditions are
imposed for the velocity (Ui = 0, i = x, y, z).

The perturbed free surface is given by

zs(t, x, y) = d+ δzs(t, x, y). (7)

Since δzs is small compared to d, the boundary conditions
at z = zs are linearized and written at z = d by Taylor
expansion. The kinematic condition reduces itself to the
equation

Uz =
∂δzs

∂t
· (8)

Neglecting the gas motion above the layer, the velocity
boundary conditions at the free surface are derived from
the normal and tangential stress balance on the interface

− (p− pg) + 2µ
∂Uz

∂z
− ρgδzs = 2Hσ, (9)

µ

(
∂Ul

∂z
+
∂Uz

∂xl

)
=

∂σ

∂xl
(l = x, y) . (10)
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In the above relations, pg is the gas pressure, H is the
mean curvature of the surface, given byH = 1/2∇2

szs, and
∇2
s is the two dimensional Laplacian operator ∂2/∂2x +

∂2/∂2y. The heat transfer balance subjected to Newton’s
law is of the form

κ
∂T

∂z
+ h(T − Tg) = 0, (11)

where h is the heat transfer coefficient between the liquid
and gas phases and Tg the temperature of the ambient
gas.

3 Linear stability analysis

The basic motionless state of the liquid layer (U =
(0, 0, 0)) allows the following distributions for the tem-
perature, the kinematic viscosity and the pressure fields

T = T0 − βz,ν = ν0 − ζβz,

p = pg + ρ0g

[
1

2
αβ
(
z2 − d2

)
+ (z − d)

]
, (12)

where β is [9]:

β =
h (T0 − Tg)

k + hd
· (13)

For the stability analysis we consider

(U, p, T ) = (U, p, T ) + (U′, p′, T ′), (14)

where the perturbations (U′, p′, T ′) are functions of time
and of all three spatial variables. The stability problem
is investigated by means of a linear analysis. Accordingly,
nonlinear terms are neglected.

In the dimensionless formulation, scales for length,
time, velocity, temperature, and pressure have been taken
to be d, d2/χ, χ/d, βd, and ρ0ν0χ/d

2, respectively, where
χ = k/ρ0c is the thermal diffusivity. Taking the curl of the
momentum equations (5) by use of (4) and linearizing, the
equations for the normal velocity component and pressure
are obtained

Pr−1 ∂∇
2UZ

∂τ
= Ra∇2

sθ + (1−RνZ)∇4UZ − 2Rν∇
2 ∂UZ

∂Z
,

(15)

∇2P = Ra
∂θ

∂Z
− 2Rν∇

2UZ . (16)

The corresponding linearized temperature equation is

∂θ

∂τ
− UZ = ∇2θ. (17)

Here ∇2 = ∂2/∂X2 + ∂2/∂Y 2 + ∂2/∂Z2 = ∇2
s + ∂2/∂Z2

is the Laplacian operator.
In equations (15–17) Z, τ , UZ , P , and θ are dimen-

sionless quantities. Three characteristic parameters have

been introduced, namely

Pr =
ν0

χ
, Prandtl number,

Ra =
gαβd4

ν0χ
, Rayleigh number,

Rν =
ζβd

ν0
, viscosity group. (18)

The so-called viscosity group is a measure of the relative
variation of the viscosity in the liquid volume. For exam-
ple, the kinematic viscosity of silicon oil decreases from

10 × 10−2 cm2s
−1

to 6 × 10−2 cm2s
−1

for 10 cSt Silicon
oil and from 50 × 10−2 cm2s

−1
to 28 × 10−2 cm2s

−1
for

50 cSt Silicon oil when the temperature increases from
25 ◦C to 60 ◦C. These changes, which reach almost a fac-
tor of 2, correspond to Rν = −0.5.

At the rigid wall Z = 0, the boundary conditions are
simply

UZ =
∂UZ

∂Z
= θ = 0. (19)

To present the normal stress balance (9) in the normal
velocity terms, the surface Laplacian operator is applied
on equation (9) and the term (∇sP ) is eliminated by use of
equations (4, 5). Taking the curl of equations (10) by use
of equation (4) also allows the tangential stress balance to
be expressed in normal velocity terms. Setting η = δzz/d
for the surface deflection, gives

UZ =
∂η

∂τ
, (20)

Pr−1 ∂
2UZ

∂τ∂Z
− 3 (1−Rν)

∂∇sUZ
∂Z

− (1−Rν)
∂3Uz

∂Z3

−Rν

(
∇2
sUZ −

∂2UZ

∂Z2

)
−
Bo

Cr
∇2
sη +

1

Cr
∇4
sη = 0, (21)

(1−Rν)

(
∇2
sUZ −

∂2UZ

∂Z2

)
= −Ma∇2

s (θ − η) , (22)

∂θ

∂Z
+Bi (θ − η) . (23)

The dimensionless parameters Ma, Bo, Cr, Bi appearing
in the boundary conditions are defined by

Ma =
γβd2

ρ0ν0χ
, Marangoni number,

Bo =
ρ0gd

2

σ0
, Bond number,

Cr =
ρ0ν0χ

σ0d
, crispation number,

Bi =
hd

k
, Biot number.
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The effects of the surface deformability are measured by
the Bond number and by the crispation number. While
Bo estimates the effect on the modified static pressure by
the gravity forces, Cr stands for the effect of the rigidity
of the deformable surface. The Biot number models the
heat transfer mechanism at the free surface. It represents
the ratio of the liquid phase heat-transfer resistance and
the gas phase transfer resistance. The value Bi→∞ cor-
responds to the conducting boundary and Bi = 0 to the
insulating boundary.

By assumption, the free surface viscosity νs = ν0(1−
Rν) is taken to be a reference one the dimensionless pa-
rameters are redefined as

Pr =
νs

χ
=Pr (1−Rν)

Ra =
gαβd4

ν0χ
=

Ra

(1−Rν)

Rν =
ζβd

νs
=

Rν

(1−Rν)

Ma =
γβd2

ρ0νsχ
=

Ma

(1−Rν)

Cr =
ρ0νsχ

σ0d
=Cr (1−Rν) .

The experimental set-up used in Bénard-Marangoni ex-
periments could be outlined as a liquid layer confined be-
tween two rigid walls, but with a thin air gap between
the free liquid surface and the upper plate. The upper
plate is kept at a constant temperature while the lower
rigid wall is heated. The temperature on the interface is
not well-defined due to the heat transfer through the gas.
The reference temperature, here, is the rigid wall temper-
ature, considering the specificity of the experiments and
in accordance with theoretical investigations.

For a given physical liquid layer with depth d, the only
parameter that can be controlled is the temperature dif-
ference T0 − Tg = βd. This is why, in practice, the three
dimensionless parameters (Marangoni number, Rayleigh
number, and the viscosity group) vary continuously with
the applied temperature slope β through the layer.

Parameter Γν = γd/ρ0χζ is defined only by the phys-
ical characteristics of the liquid layer, and is independent
of the choice of the reference viscosity. So, Ma = ΓνRν
and the Boussinesq case is obtained at Γν →∞.

Even though the Rayleigh and the Marangoni num-
bers correspond to different instability mechanisms it is
possible to introduce the parameter Γ = γ/ρ0αgd

2, that
defines the ratio Ma = ΓRa (see, also Peréz-Garcia and
Carneiro’s work [14]). Pure thermocapillary instability is
obtained at Γ → ∞, while at Γ = 0 only the buoyancy
instability is working.

In order to be within the limits of our model it is neces-
sary that the applied temperature difference through the
layer (βd) satisfy the inequality | βd |� 1/α . In terms of
the dimensionless parameters this reads as

Ra� Bo/Cr. (24)

The condition is equivalent to those in [26] when surface
tension is not considered. By use of the relation between
Ma and Ra, in the case of the finite Γ (both instability
mechanisms act simultaneously) (24) can be rewritten as

|Ma |� | Γ | Bo/Cr. (25)

The general solution of equations (15, 17) with boundary
conditions (19–23) is a superposition of the normal modes

(UZ , θ, η) = [W (Z), Θ(Z), δs] e
s̃τei(αXX+αY Y ) (26)

where s̃ = s+iω is a complex growth rate with growth rate
s and frequency ω, α2 = α2

X + α2
Y is the wave number,

and W, Θ, δs the amplitudes. Here marginal or neutral
stability is under investigation, so one gets s = 0.

Introducing (26) in equations (15, 17) the following
set of linearized differential equations is obtained for the
normal velocity and the temperature amplitudes

(
D2 − α2

)2
W − iωPr−1

(
D2 − α2

)
W

−Rν
[
2
(
D2 − α2

)
DW + Z

(
D2 − α2

)2
W
]

= Raα2Θ,

(27)(
D2 − α2 − iω

)
Θ = −W , (28)

where D stands for d/dZ. The corresponding boundary
conditions are

W = DW = Θ = 0, at Z = 0 (29)

W − iωδs = 0

Pr−1iωD2W
+3α2 (1−Rν)DW − (1−Rν)D3W
+Rν

(
D2 + α2

)
W + 1

Cr
α2
(
α2 +Bo

)
δs = 0

(1−Rν)
(
D2 + α2

)
W = −Maα2 (Θ − δs)

DΘ +Bi (Θ − δs) = 0


(30)

at Z = 1.

Equations (27,28) can be reduced to a single sixth order
equation for the Θ variable alone(
D2 − α2q2

) (
D2 − α2r2

) (
D2 − α2

)
Θ−Rν

(
D2 − α2q2

)
×
(
D2 − α2

) [
2DΘ + Z

(
D2 − α2

)
Θ
]

= −α2RaΘ, (31)

where r2 = 1+ iω/α2Pr and q2 = 1+ iω/α2. The relevant
boundary conditions are also rewritten in terms of Θ.

The eigenvalue problem defined by equation (31) and
boundary conditions (29, 30) is solved by searching for the
solution in the form of a series expansion in Z

Θ(z) =
N∑
j=0

Ej Z
j. (32)
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Table 1. Physical data for different types of silicon oil and corresponding dimensionless parameters Γν , Γ , Pr, Bo, and Cr at
d = 0.1 cm.

Silicon oil 47V 5 47V 10 47V 20 47V 100

ρ [g/cm3] 0.910 0.930 0.950 0.965

ν × 102 [cm2/s] 5 10 20 100

χ × 104 [cm2/s] 6.69 8.60 9.17 11.25

α × 103 [ ◦C−1] 1.0 1.08 1.07 0.945

σ [dyn/cm] 19.7 20.1 20.6 20.9

γ [dyn/cm ◦C] 0.068 0.069 0.06 0.05

Γν −20 576 −7 549 −2 940 −358

Γ 7.3 7.0 6.0 5.6

Pr 75 116 218 889

Bo 0.45 0.45 0.45 0.45

Cr 1.545 × 10−5 3.979 × 10−5 0.845 × 10−4 5.19 × 10−4

Using rigid boundary conditions (29), all expansion co-
efficients Ej are determined with three arbitrary con-
stants chosen to be E1, E4, E5 taking E0 = 0, E2 = 0,
E3 = E1(α2 + iω) and

E6 = −

(∑5
i=0 a0,iEi

)
a0,6

, E7 = −

(∑6
i=0 a1,iEi

)
a1,7

,

E8 = −

(∑7
i=0 a2,iEi

)
a2,8

, E9 = −

(∑8
i=0 a3,iEi

)
a3,9

,

E10 = −

(∑9
i=0 a4,iEi

)
a4,10

, E11 = −

(∑10
i=0 a5,iEi

)
a5,11

,

Ej+6 =

(∑11
j=0 aj,j−6+iEi

)
a+6

for j ≥ 6.

The free boundary conditions (30) are introduced into the
three-constant solution for Θ.

The condition for the existence of a nontrivial solution
(the characteristic determinant of the resulting homoge-
neous linear set of equations must be zero) determines the
stability criteria

Ma = F (α, ω, Pr, Bo, Cr, Ra, Rν , Bi ), (33)

where F is a real valued function of the parameters in
parentheses. The stationary stability curve is obtained
under the condition ω = 0, while ω 6= 0 corresponds to
the oscillatory convective motion. As to the oscillatory
case, it is clear that for arbitrary values of the enumer-
ated parameters, the value of Ma will generally be com-
plex (Ma = Mar + iMai). The solution of the problem is
only reasonable for a real value of Ma. A numerical search
has been conducted to find the value of ω that makes the
imaginary part of Ma vanish. The numerical accuracy, of
the order of 10−4, is achieved by increasing the number N
of expansion coefficients.

4 Results and comments

Our investigation is concerned with silicon oil as it is the
liquid mostly used in the Bénard-Marangoni experiments
and its viscosity is strongly temperature dependent. The
available physical data for different types of silicon oil and
calculated dimensionless parameters Γν , Γ , Pr, Bo, and
Cr for a liquid layer with depth d = 0.1 cm are presented
in Table 1, while the values of the dimensionless parame-
ters Γν , Γ , the crispation, and the Bond number for the
quoted experiments [3–6] are given in Table 2. The Bond
number and the parameter Γ are influenced mainly by
the depth of the liquid, whereas the parameter Γν , the
Prandtl number and the crispation number are strongly
affected by the type of silicon oil, and their values dras-
tically change with an increase of the kinematic viscosity.
In all cases investigated the free surface is assumed to be
insulated, e.g. Bi = 0. The estimated value of Bi for the
quoted experiments is less than 1 and having this into ac-
count leads to a slight increase of the critical parameters.

Detailed calculations have been carried out for the
viscosity group which varies between −0.5 and 0.5. The
sign of the viscosity group depends on the type of liq-
uid (whether the viscosity is an increasing or a decreasing
function of the temperature) as well as on the type of
heating (from below or from above). The more relevant
physical parameter accounting for viscosity effects is Γν
defined only by means of the thermophysical character-
istics of the liquid. For a liquid such as silicon oil it is
negative and the sign of parameters Ma and Rν is always
opposite.

Reliable calculations for the convective threshold avail-
able in the literature are used to validate the code. In the
limit Rν → 0, neglecting the gravity (Ra = 0), but con-
sidering the surface deformability (Cr 6= 0) Takashima’s
results [9,10] for stationary and oscillatory convection are
found. An additional check is made by comparing our re-
sults with linear stability boundaries given by Gouesbet et
al. [13] and Pérez-Garcia and Carneiro [14] when Ra 6= 0,
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Table 2. Values of the parameter Γν , Γ , and Cr for the Bénard-Marangoni experiments.

d [cm] Γν Γ Cr Bo

Koshmieder and 100 cSt 0.3 −1 100 0.6 1.8 × 10−4 4.41

Switzer [3] 0.19 −697 1.5 2.9 × 10−4 1.77

50 cSt 0.19 −1 444 1.3 2.8 × 10−4 1.85

0.12 −912 3.3 4.4 × 10−4 0.74

Nitschke and Thess [4] 10 cSt 0.155 −7 511 2.9 2.6 × 10−5 1.08

Schatz et al. [5] 7.1 cSt 0.0419 −4 249 38.9 6.8 × 10−5 0.079

VanHook et al. [6] 10.2 cSt 0.005 −321 2 952 9.7 × 10−4 0.001

0.025 −1 605 118 1.9 × 10−4 0.028

0 1 2 3 4
α

0

100

200

Ma

3

1

2

Fig. 1. Marginal stability curves Ma vs. α, for Bo = 0.1,
Bi = 0, Γ = 0.8 and different values of the crispation number:
Cr = 0 (label 1); Cr = 10−3 (label 2); Cr = 10−2 (label 3).
Solid curves refer to Rν = 0 and dashed curves to Rν = −0.3.

Cr 6= 0, and Rν = 0. Table 3 shows perfect agreement
between the quoted results and our own. A severe test of
the effects of viscosity is provided by comparison with Se-
lak and Lebon’s results [22] when Cr = 0, and Ra 6= 0,
and with our previous data [24] at Ra = 0, Cr 6= 0. These
various favourable tests strongly validate our numerical
results.

4.1 Stationary convection

It is well-known that the Prandtl number does not in-
fluence the stationary mode, so the critical value of the
stationary Marangoni number Masc does not vary with
Pr.

In Figure 1 typical stationary marginal stability curves
Ma(α) are plotted for Γ = 0.8 and several values of
the crispation number (Cr = 0; 10−2 ; 10−3). Solid lines

Table 3. Critical values of the stationary Marangoni numbers
Masc, oscillatory Marangoni number Maoc and corresponding
wave numbers and wave frequencies at Ra = Bi = 0, Bo = 0.1
and Pr = 1.

Rν Cr αsc Masc αoc ωoc Maoc

−0.3 0 1.97 94.875 - - -

0 0 1.99 79.607 - - -

0.3 0 2.03 63.609 - - -

−0.3 10−1 0 0.681 0.28 7.05 −1 198.51

0 10−1 0 0.667 0.28 6.59 −1 015.98

0.3 10−1 0 0.647 0.27 6.10 −870.01

−0.3 10−2 0 6.813 0.27 7.22 −1 229.01

0 10−2 0 6.667 0.28 6.76 −1 043.97

0.3 10−2 0 6.471 0.28 6.27 −893.27

−0.3 10−3 0 68.135 0.34 9.84 −1 373.72

0 10−3 0 66.667 0.59 16.62 −1 075.91

0.3 10−3 1.99 62.822 0.60 15.62 −743.72

−0.3 10−4 1.96 94.735 0.34 17.39 −2 140.84

0 10−4 1.99 79.499 0.34 16.55 −1 895.65

0.3 10−4 2.03 63.531 0.32 15.50 −1 659.62

−0.3 10−5 1.97 94.861 0.18 21.79 −9 129.65

0 10−5 1.99 79.596 0.18 20.72 −8 552.32

0.3 10−5 2.03 63.601 0.17 19.59 −7 982.13

−0.3 10−6 1.97 94.873 0.02 26.21 −65 260.21

0 10−6 1.99 79.606 0.08 26.19 −62 785.51

0.3 10−6 2.03 63.608 0.08 24.55 −60 462.71

correspond to the constant viscosity (Rν = 0), while
dashed lines represent the temperature-dependent viscos-
ity (Rν = −0.3). When the free surface is non-deformable
the curves, labelled by 1, have a minimum at a non-zero
value of the wave number. An increase of parameter Rν
causes a decrease of the critical value of the stationary
Marangoni number Masc and a slight increase of the cor-
responding wave number αsc (see, also Tab. 3). For pure
thermocapillary convection, the relative deviation of Masc
due to the variable-viscosity effect is 19.1% at Rν = −0.3.
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Fig. 2. Marginal stability curves Ma vs. α, for Bo = 0.1,
Rν = −0.3, Bi = 0 and for two values of the crispation number:
Cr = 10−4 (label 1); Cr = 10−3 (label 2). Solid curves refer to
pure thermocapillary case Γ → ∞, dashed curves to Γ = 0.8
and dotted to Γ = 0.4.

When surface deformability is considered (Cr 6= 0) the
stationary neutral curve has two local minima, one located
at αc = 0 and the other at αc approximately equal to 2.
The minimum located at αc = 0 is not very sensitive to the
variation of Rν and it is mainly determined by the surface
deformability. At Rν = 0 in the pure thermocapillary case
even the value of the local minimum is reduced to

Ma0 =
2Bo(1 +Bi)

Cr
·

When Cr becomes large the zero-mode becomes the most
dangerous one and the long-wavelength instability sets in
as a primary one. In contrast, for small values of Cr the
global minimum occurs at αc = 2 and instability will start
under the form of polygonal cells. At some transient value
of the crispation number, the neutral curve has two equal
local minima (one at zero wave number and the other at
non-zero wave number) and the corresponding two spatial
modes can coexist. The neutral curve around the second
minimum is almost insensitive to the surface deformation,
but it is influenced by the variable-viscosity effects (see,
also Tab. 3).

The parameter Γ is the only relevant physical parame-
ter accounting for the relative importance of thermocapil-
lary and buoyant instability mechanisms. In order to show
the contributions of buoyancy force, in Figure 2 we have
represented Ma as a function of α for several values of the
parameter Γ : pure thermocapillary instability mechanism
(Γ → ∞), Γ = 0.8 and Γ = 0.4. The Bond number is
equal to 0.1, and the crispation number takes two values
10−4 and 10−3. Solid lines refer to the pure thermocapil-
lary mechanism, dashed lines to Γ = 0.8 and dotted ones
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Fig. 3. Critical Marangoni number Masc vs. the crispation
number for Bo = 0.1, Bi = 0, Γ = 0.8 and various values of
the viscosity group: Rν = −0.5 (label 1); Rν = −0.3 (label 2);
Rν = 0 (label 3); Rν = 0.3 (label 4); Rν = 0.5 (label 5).

to Γ = 0.4. For small wave numbers, the buoyancy force
leads to an increase of the Marangoni number, but the
local minimum at α = 0 is independent of Γ and conse-
quently of Ra. One may conclude that below some depth
of the liquid layer determined by the crispation number at
which the two local minima coincide, stationary convec-
tion is insensitive to the buoyancy instability mechanism.
For wave numbers of order one and greater it causes a
decrease of Ma, so that, for a certain value of Cr below
which the global minimum coincides with the second one,
the buoyancy force destabilizes the liquid system.

The dependence of a variable viscosity on the criti-
cal Marangoni number is reported in Figure 3 at Γ =
0.8, Bo = 0.1 and several values of the viscosity group
Rν = −0.5 ;−0.3 ; 0 ; 0.3 ; 0.5. The buoyancy force en-
hances the instability, leading to a decrease of the con-
vective threshold, to be compared with the pure ther-
mocapillary study [24]. For sufficiently high values of the
crispation number (Cr > 10−3), the influence of a variable
viscosity is minute. When the kinematic viscosity at the
hot wall is taken to be the reference viscosity, a negative
(positive) value of Rν stabilizes (destabilizes) the layer.

The Marangoni number and viscosity group are linked
through the parameter Γν which is independent of the
temperature difference. So, a fixed value of Γν corresponds
to a pair of critical parametersMasc and Rcν . For the layer
of 100 cSt silicon oil with depth varing from 0.055 cm to
0.7 cm, the parameter Γν decreases from −200 to −2500.
In Table 4 the parameter Rcν , the critical wave number,
and the value of the convective threshold are presented for
a non-deformable case (Cr = Bo = 0) and various values
of Γν . The increase of Γν from −∞ to −200 leads to an in-
crease of the convective threshold from 79.607 to 106.309,
while the critical wave number is weakly sensitive to
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Table 4. Critical values of the stationary Marangoni num-
bers Masc, wave numbers αsc, and corresponding values of the
viscosity group Rcν at different Γν .

Γν Rcν αsc Masc

−200 −0.53 1.95 106.309

−300 −0.33 1.97 95.845

−400 −0.23 1.97 91.268

−500 −0.18 1.98 88.704

−700 −0.12 1.98 85.923

−900 −0.09 1.98 84.443

−1500 −0.05 1.99 82.445

−2500 −0.03 1.99 81.289

−∞ 0 1.99 79.607

these variations. The effect of a variable viscosity vanishes
for Γν < −2500.

The results, given above, presenting the influence of
deformability and viscosity on the convective threshold
give a better understanding of the recent experiments
[3–6]. Since Γν < −2500 (see, Tab. 2) the effect of non-
zero Rν is negligible for the experiments of Nitschke and
Thess [4], and Schatz et al. [5]. VanHook et al. [6] consid-
ered very a thin liquid layer where instability sets in as a
long-wavelength insensitive to a variable viscosity effect.

The values of Γν and Γ are easily obtained from the
parameter values tabulated in each experiment [3]. Since
the reference viscosity in Koschmieder and Switzer’s ex-
periments is given at the temperature of the cold wall
the modified critical Marangoni number Masc is used
here. In order to better distinguish between the the ef-
fects of the variable viscosity and the buoyancy, the critical
Marangoni number (Ma∗sc) calculated at the same value
of the parameter Γν , but at the given Rayleigh number
instead of at the given Γ , is also determined. The crit-
ical Marangoni number predicted by Nield’s theoretical
approach is noted by Man. The values of these three crit-
ical Marangoni numbers and corresponding ratios to the
experimentally measured Marangoni number (Mace) are
given in Table 5. For the first experiment only with a
0.3 cm layer depth used here model slightly increases the
shift between the theoretically predicted and the exper-
imentally measured threshold. In all other cases investi-
gated the ratio increases from 0.82 to 0.86 for 0.19 cm
100 cSt silicon oil, from 0.97 to 1.00 for 0.19 cm 50 cSt
silicon oil, and from 0.79 to 0.82 for 0.12 cm 50 cSt sili-
con oil. The shift between Mace/Masc and Mace/Ma∗sc
is less than 0.01. So, one may conclude that the use of a
variable-viscosity model provides a theoretical approach
closer to the experimental data.

4.2 Oscillatory convection

While Takashima [10] proves the existence of oscillatory
convection in a liquid layer with a deformable upper sur-

face and a purely thermocapillary mechanism, Benguria
and Depassier [26] show that the oscillatory convection
can also arise from the purely buoyancy mechanism alone.
The effects of the simultaneous action of thermocapillary
and buoyancy mechanisms are investigated in the work of
Gouesbet et al. [13] in the regionMa,Ra < 0 and of Pérez-
Garcia and Carneiro [14] in the region Ma < 0, Ra > 0.
The parameter Γ , defining the ratio between Ma and Ra
is positive for most liquids. It can be negative, however,
for some metal alloys. Both cases treat Bo > 0. A layer of
liquid with positive Γ above a cold wall is studied in the
first case, while the layer of liquid with negative Γ above
a heated wall is considered in the second case.

Numerically it has been found that the neutral oscil-
latory Marangoni numbers are always negative, which co-
incides with Takashima’s results [10] in the pure thermo-
capillary case, as well as with those of Gouesbet et al. [13]
and Pérez-Garcia and Carneiro’s [14] in the case of the
simultaneous action of both instability mechanisms.

The absolute threshold shift introduced by a variable
viscosity is stronger for the oscillatory than for the station-
ary convection (see, Tab. 3). However, the relative devia-
tions, for example, at Cr = 10−4 are: 13% for Rν = −0.3
and 12.5% for Rν = 0.3 for the oscillatory convection,
and 19% for Rν = −0.3 and 20% for Rν = 0.3 in the the
stationary convection.

Since our investigation is devoted to silicon oil with
a positive value of the parameter Γ , here, we aim to ex-
tend the stability analysis of Gouesbet et al. [13]. As has
already been mentioned, such a liquid has opposite sign
for the Marangoni number and the viscosity group. Posi-
tive values of Rν are physically relevant when the stability
criteria for a cooling rigid wall (negative values of the os-
cillatory Marangoni number) are under investigation.

In the pure thermocapillary case (Ra = 0) the liquid
layer stability increases with a decrease of Cr, see Table 3.
But dependending on the values of Pr, Bo and Bi there
is an interval of the crispation number where the critical
Marangoni number is a decreasing function of Cr. For in-
stance, at Pr = 1, Bo = 0.1 and Bi = 0 it is [10−3, 10−4].
This coincides also with the results of Takashima [10] and
Gouesbet et al. [13]. As in the stationary case, the oscil-
latory neutral curve can also have two minima. The sit-
uation when these two minima coincide corresponds to a
jump of the critical wave numbers, accompanied by a jump
of the frequencies and by a discontinuity in the slope of
Mac(Rac) curves. The conditions under which oscillatory
and stationary modes can coexist simultaneously are de-
termined by Pérez-Garcia and Carneiro [14]. To ensure
that we remain within the limits of our model, we have
restricted the results obtained using equation (24). Due to
this reason we have not paid attention here to the problem
of coexistence of these minima.

In Figure 4a, 4b the neutral curves are presented
in the (Mac, Rac) – plane at Rν = 0; 0.3 respec-
tively. The results are obtained at Bo = 0.1, Pr = 1,
Bi = 0 and several values of the crispation number:
Cr = 0.0015; 0.001; 0.0005. Solid lines refer to station-
ary convection and dashed ones to oscillatory convection.
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Table 5. Relative deviation of the theoretical predicted convective threshold from the experimental data.

d [cm] Mace Γν Γ Masc
Mace
Masc

Ra Ma∗sc
Mace
Ma∗sc

Man
Mace
Man

100 cSt 0.3 71.0 −1 100 0.6 65.8 1.08 115 66.8 1.08 66.8 1.06

0.19 61.8 −697 1.5 71.5 0.86 40 72.6 0.85 75.2 0.82

50 cSt 0.19 72.1 −1 444 1.3 72.1 1.00 54 72.5 0.99 73.6 0.97

0.12 61.4 −912 3.3 74.8 0.82 18 75.4 0.81 77.6 0.79
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Fig. 4. Critical Marangoni numberMac vs. the Rayleigh num-
ber for Bo = 0.1, Pr = 1, Bi = 0 and various values of the
crispation number: Cr = 0.0015 (label 1); Cr = 0.001 (la-
bel 2); Cr = 0.0005 (label 3). Solid curves refer to stationary
critical Marangoni number Masc and dashed ones to oscilla-
tory Marangoni number Maoc. The viscosity group is equal to
0 and 0.3 on a, and b, respectively.

The region between solid and dashed lines corresponds to
the stable case. The viscosity group is equal to 0 and 0.3
on a, and b, respectively.

As is seen from the graphics, the temperature-depen-
dent viscosity destabilises the liquid system but the values
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Fig. 5. Critical Marangoni numberMac vs. the Rayleigh num-
ber for Bo = 0.1, Cr = 0.0005, Rν = 0.3, Bi = 0 and various
values of the Prandtl number: Pr = 1 (label 1); Pr = 2 (label
2); Pr = 3 (label 3). Solid curves refer to stationary criti-
cal Marangoni number Masc and dashed ones to oscillatory
Marangoni number Maoc.

are not qualitatively different from the Boussinesq values.
Only the behaviour of Mac at Rac = 0 is different because
the interval of the crispation numbers where Mac is a
decreasing function of Cr depends also on Rν .

In the usual case with positive Γ when To < Tg
(Mac = Maoc < 0) the instability sets in as oscillations.
From the results presented in Figure 4 one may conclude
that the instability can occur as an oscillatory motion
when the temperature of the solid wall is lower than that
of the ambient gas.

In order to give an idea of how the Prandtl num-
ber influences the layer stability, in Figure 5 the critical
Marangoni number Mac is plotted against the Rayleigh
number for Cr = 0.0005, Bo = 0.1, Rν = 0.3, Bi = 0 and
various values of the Prandtl number: Pr = 1; 2; 3. As
can be seen, the stability of the layer is strongly amplified
by the increase of Pr. An increase of the Prandtl number
from 1 to 2 causes decrease of Maoc of almost a factor of
two.

The critical Marangoni number Mac versus the Ray-
leigh number for Cr = 0.0005, Rν = 0.3, Pr = 1, Bi = 0
and various values of the Bond number: Bo = 0.1; 0.5 ; 1
is given in Figure 6. An increase of the overstatic pressure
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Fig. 6. Critical Marangoni numberMac vs. the Rayleigh num-
ber for Cr = 0.0005, Rν = 20.3, Pr = 1, Bi = 0 and various
values of the Bond number: Bo = 0.1 (label 1); Bo = 0.5 (la-
bel 2); Bo = 1 (label 3). Solid curves refer to stationary crit-
ical Marangoni number Masc and dashed ones to oscillatory
Marangoni number Maoc.

(the Bond number), taking place with an increase of the
liquid depth, also stabilises the liquid system.

Figures 4–6 give an idea of how the most physically
relevant parameters influence the oscillatory instability.
Since the Prandtl number strongly enhances the layer
stability we direct our interest to 0.65 cSt Silicon oil
(Pr = 8.4). For such a liquid the parameter Γν lies in the
interval [−15 000, −150 000] for a liquid depth between
0.005 cm and 0.05 cm. For d = 0.05 cm the corresponding
values of crispation and Bond number are Cr = 0.0001
and Bo = 0.1.

In Table 6 the values of Γν and the corresponding criti-
cal values of the viscosity group, the wave number, the fre-
quency, and oscillatory Marangoni number are tabulated
for two different Prandtl numbers (Pr = 1, and Pr = 8.4)
at Cr = 0.0001 and Bo = 0.1. The preceding analysis indi-
cates that a variable viscosity effect destabilizes the liquid
system. This confirms what was expected as the negative
Marangoni numbers obtained are equivalent to cooling of
the rigid wall and the reference kinematic viscosity used
is greater than the mean viscosity.

In spite of the destabilising effect of a variable viscosity,
all the determined critical oscillatory Marangoni numbers
remain large an order of 103 which is related to a criti-
cal temperature difference between 50 ◦ and 100 ◦ that is
impossible to obtain physically for such a thin liquid layer.

4.3 Conclusion

The linear stability properties of a liquid layer with vari-
able viscosity and a deformable free surface are stud-
ied under the simultaneous action of surface-tension and
buoyancy-driven instability mechanisms. The investiga-
tion is particularly focussed on the role of the crispation

Table 6. Critical values of the oscillatory Marangoni num-
bers Maoc, wave numbers αoc, wave frequencies ωoc, and cor-
responding values of the viscosity group Rcν at different Γν .

Pr = 1

Γν Rcν αoc ωoc Maoc

−2 500 0.58 0.31 14.30 −1 447.39

−3 000 0.50 0.31 14.67 −1 505.53

−5 000 0.33 0.32 15.41 −1 638.23

−7 000 0.24 0.33 15.73 −1 703.36

−10 000 0.18 0.33 15.99 −1 756.35

−15 000 0.12 0.33 16.16 −1 800.16

−20 000 0.09 0.33 16.21 −1 823.02

−25 000 0.07 0.33 16.21 −1 837.07

−30 000 0.06 0.33 16.34 −1 846.48

−∞ 0 0.33 16.53 −1 895.65

Pr = 8.4

Γν Rcν αoc ωoc Maoc

−15 000 0.51 0.44 80.94 −7 700.58

−20 000 0.42 0.44 82.22 −8 495.06

−30 000 0.32 0.44 83.71 −9 511.52

−40 000 0.25 0.44 84.19 −10 136.94

−50 000 0.21 0.44 84.71 −10 564.60

−60 000 0.18 0.44 84.73 −10 872.45

−80 000 0.14 0.44 84.83 −11 290.90

−100 000 0.12 0.44 85.25 −11 561.05

−150 000 0.08 0.43 85.21 −11 946.88

−∞ 0 0.43 85.25 −12 816.50

number and it is shown that an increase of this parame-
ter abruptly changes the value of the critical wave num-
ber. Stationary convection occurs with finite or infinite
wavelength. Numerical computations prove that consider-
ing the variable viscosity effects leads only to a quanti-
tative change in the stability parameters. When the rigid
wall is cold it is found that oscillatory instability sets in for
most liquids with decreasing surface tension with temper-
ature. It is demonstrated that the increase of the Prandtl
number leads to a considerable stabilization of the liquid
system.
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